Water and Deuterium Oxide Permeability through Aquaporin 1: MD Predictions and Experimental Verification
نویسندگان
چکیده
Determining the mechanisms of flux through protein channels requires a combination of structural data, permeability measurement, and molecular dynamics (MD) simulations. To further clarify the mechanism of flux through aquaporin 1 (AQP1), osmotic p(f) (cm(3)/s/pore) and diffusion p(d) (cm(3)/s/pore) permeability coefficients per pore of H(2)O and D(2)O in AQP1 were calculated using MD simulations. We then compared the simulation results with experimental measurements of the osmotic AQP1 permeabilities of H(2)O and D(2)O. In this manner we evaluated the ability of MD simulations to predict actual flux results. For the MD simulations, the force field parameters of the D(2)O model were reparameterized from the TIP3P water model to reproduce the experimentally observed difference in the bulk self diffusion constants of H(2)O vs. D(2)O. Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent, and AQP1. It was found that the calculated value of p(f) for D(2)O is approximately 15% smaller than for H(2)O. Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes, and it was found that the measured macroscopic osmotic permeability coefficient P(f) (cm/s) of D(2)O is approximately 21% lower than for H(2)O. The combined computational and experimental results suggest that deuterium oxide permeability through AQP1 is similar to that of water. The slightly lower observed osmotic permeability of D(2)O compared to H(2)O in AQP1 is most likely due to the lower self diffusion constant of D(2)O.
منابع مشابه
Aquaporin-1 transports NO across cell membranes.
NO plays a role in the regulation of blood pressure through its effects on renal, cardiovascular, and central nervous system function. It is generally thought to freely diffuse through cell membranes without need for a specific transporter. The water channel aquaporin-1 transports low molecular weight gases in addition to water and is expressed in cells that produce or are the targets of NO. Co...
متن کاملCarboxypeptidasey from Saccharomyces cerevisiae Conformational Difference Reflected in Kinetic Behaviour in Water and Deuterium Oxide
متن کامل
Water structure changes induced by ceramics can be detected by increased permeability through aquaporin
Aquporins are intrinsic membrane proteins that function as water channel to transport water and/or mineral nutrients across biological membranes. In this study, we aimed to clarify whether water structure can be changed by the presence of ceramics and whether such a change can be determined by aquaporin. First, we confirmed that ceramics could transform tap water into active tap water by increa...
متن کاملThe Mechanism of the Osmotic Adjustment of Body
Since permeability of cell membranes to water has been clearly demonstrated, there are several theoretically possible responses of cells to dilution of the extracellular fluid. Osmotic equilibrium might result from net movement of water into cells in response to extracellular dilution. On the other hand, net movement of water into cells might be averted by: 1) active transport of water out of c...
متن کاملAn Experimental Study of Acid Diversion by Using Gelled Acid Systems Based on Viscoelastic Surfactants: A Case Study on One of Iran Southwest Oilfields
In matrix acidizing operations, the main goal is increasing permeability. For production engineers, it is desirable that acid could be injected into whole [M.N.1] [amehri.gh2] pay zone. Sometimes, this pay zone has a long height and various sub-layers which have different permeability values. To prevent acid from going completely into the most permeable sub-layer, one of the useful techniques i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 130 شماره
صفحات -
تاریخ انتشار 2007